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Abstract

Atomic charges play a very important role in drug-target recognition. However, computation of atomic charges with
high-level quantum mechanics (QM) calculations is very time-consuming. A number of machine learning (ML)-based atomic
charge prediction methods have been proposed to speed up the calculation of high-accuracy atomic charges in recent years.
However, most of them used a set of predefined molecular properties, such as molecular fingerprints, for model
construction, which is knowledge-dependent and may lead to biased predictions due to the representation preference of
different molecular properties used for training. To solve the problem, we present a new architecture based on graph
convolutional network (GCN) and develop a high-accuracy atomic charge prediction model named DeepAtomicCharge. The

Jike Wang is currently a PhD student in the School of Computer Science, Wuhan University, China. His research interests lie in the area of artificial
intelligence (Al), including developing new algorithms and applications for drug design.

Dongsheng Cao received his PhD degree in 2013 from Central South University, China. He is currently a professor in the Xiangya School of Pharmaceutical
Sciences, Central South University, China. His research interests include (i) artificial intelligent systems for drug discovery and disease diagnosis, (ii) the
development of software, web service and database in systems biology and drug discovery and (iii) design and discovery of small molecule inhibitors of
important protein targets.

Cunchen Tang received his PhD degree from Wuhan University, China. He is currently a professor in the School of Computer Science, Wuhan University,
China. His research interests include artificial intelligence and digital media.

Lei Xu received his PhD degree in 2013 from Soochow University, China, and now he is an associate professor in the Institute of Bioinformatics and Medical
Engineering, Jiangsu University of Technology, Changzhou, China. His research interests lie on the methodology development and application of computer
aided drug design (CADD) and design and discovery of novel drug candidates for important targets.

Qiaojun He received his PhD degree in 2005 from Zhejiang University, China. He is currently a professor in the Department of Pharmacology, School of
Pharmaceutical Science, Zhejiang University. His research focuses on oncology pharmacology and drug toxicology.

Bo Yang received her PhD degree in 1998 from Shanghai Institute of Materia & Medica, Chinese Academy of Sciences, China. She is currently a professor
in the Department of Pharmacology, School of Pharmaceutical Science, Zhejiang University. Her research interests lie on identifying and verifying the
potential novel drug targets based on the molecular understanding of the process of the chronic non-communicate diseases, especially for cancer.

Xi Chen received his PhD degree in 2007 from Wuhan University, China. He is currently a professor in the School of Computer Science, Wuhan University,
China. His research interests include (i) artificial intelligence for cognitive science, (ii) the development of software, web service and database in
interdisciplinary areas and (iii) image information processing and applications.

Huiyong Sun received his PhD degree in 2015 from Soochow University, China. He is currently an associate professor in the Department of Medicinal
Chemistry, China Pharmaceutical University, China. His research interests include (i) free energy calculation based drug discovery and (ii) artificial
intelligence based drug design.

Tingjun Hou received his PhD degree in 2002 from Peking University, China. He is currently a professor in the College of Pharmaceutical Sciences, Zhejiang
University, China. His research interests include (i) development of structure-based virtual screening methodologies, (ii) prediction of ADMET and drug-
likeness and (iii) design and discovery of small molecular inhibitors of important protein targets. More information can be found at the website of his
group: http://cadd.zju.edu.cn.

Submitted: 18 June 2020; Received (in revised form): 6 July 2020

© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

2202 1890100 G| U Josn AysieAlun Buoy oelr leybueys Aq L 8G968G/£81ERAG/E/ZZ/8I01ME/qIG/W00"dNO"DIWSpEsE/:SARY WO} POPEojUMOd


http://cadd.zju.edu.cn
https://academic.oup.com/

2 | Wangetal

new GCN architecture is designed with only the atomic properties and the connection information between the atoms in
molecules and can dynamically learn and convert molecules into appropriate atomic features without any prior knowledge
of the molecules. Using the designed GCN architecture, substantial improvement is achieved for the prediction accuracy of
atomic charges. The average root-mean-square error (RMSE) of DeepAtomicCharge is 0.0121 e, which is obviously more
accurate than that (0.0180 e) reported by the previous benchmark study on the same two external test sets. Moreover, the
new GCN architecture needs much lower storage space compared with other methods, and the predicted DDEC atomic
charges can be efficiently used in large-scale structure-based drug design, thus opening a new avenue for high-performance

atomic charge prediction and application.
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Introduction

Atomic charge is one of the most important properties in compu-
tational chemistry. It helps to describe the electrostatic state of
atoms in different molecular environment [1]. Although atomic
charge is a seemingly simple property, the precise estimation of
atomic charges typically requires high-level quantum mechan-
ics (QM) calculations since two atoms that belong to the same
element and are connected to the same atoms may involve in
different chemical environments that cannot be well character-
ized by simple rules based on atom types and bond types. How-
ever, high-level QM-based atomic charge calculation, such as the
fitting of restrained electrostatic potential (RESP) [2] charges, is
very time-consuming and not suitable to be employed to large
chemical datasets for virtual screening. To speed up the calcu-
lation of atomic charges, several compromised methods have
been developed, such as the semi-empirical method of AM1-
BCC charges [3] and the empirical method of Gasteiger-Marsili
charges [4], which can significantly reduce computational cost,
whereas decrease prediction accuracy as well [5]. Therefore,
how to balance the accuracy and efficiency of atomic charge
prediction is a long-standing issue in computational chemistry.

In recent years, machine learning (ML) or artificial intelli-
gence (AI) methods have emerged as powerful tools for solving
various complicated issues in medicine, chemistry and biology
sciences, such as structure-based virtual screening toward spe-
cific drug targets [6], medical image classification [7], compound
retrosynthesis [8], etc. There is no exception when it comes to the
prediction of atomic charges. Up to date, a number of pioneering
studies have been conducted to build ML models to fit the high-
level QM atomic charges with the purpose of accelerating the cal-
culation speed while not losing accuracy too much. In 2013, Rai
and Bakken proposed a ML method to predict the atomic charges
for H, C, O, N, F, S and Cl derived by fitting the b3lyp/6-31Gx elec-
trostatic potentials (ESP) [9]. Based on a set of 3D descriptors that
consist of 126 artificially defined symmetry function elements
(77 radial and 49 angular), random forest (RF) [10] regression
was used to train the model on a dataset of ~80 000 molecules
randomly selected from the Pfizer library and ZINC database.
The prediction on the test set with 5000 molecules reached a
mean unsigned error (MUE) of 0.03 e. In 2018, Bleiziffer et al.
[11] developed another atomic charge prediction model using
RF regression with the aim to reproduce the DDEC charges for
C,H,N, O, S, P F Cl, Br and I [12-14]. The training set consists
of 130 247 drug-like molecules, and the test set includes two
parts: the one containing 146 molecules taken from Caleman’s
work [15] and the other containing 1385 drug-like molecules
from the ZINC database [16]. The molecules were parameterized
by a set of fixed-length descriptors calculated by RDKit [17], and
the model achieved extraordinarily accurate predictions on the

two test datasets (RMSEs=0.029 e and 0.016 e, respectively). In
the same year, Sifain et al. used the hierarchically interacting
particle neural network (HIP-NN) algorithm to develop a new
charge assignment model to reproduce the molecular dipole
moments across a large diverse dataset containing C, H, N and
O atoms, which yielded good predictions on the test dataset
[18]. Moreover, recently Martin and Heider [19] proposed a RF-
based online tool called ContraDRG for fast predicting PRODRG
or Automated Topology Builder (ATB) partial charges for small
molecules. The model uses 3D or 2D feature encodings as the
input and shows high accuracy for the external test set.
Although significant improvement has been achieved for
atomic charge estimation, traditional ML-based models usually
employ artificially defined 2D/3D descriptors, which may yield
biased predictions due to the preference of different types
of molecular representations. Recently, graph neural network
(GNN), a deep learning (DL) algorithm, was used to learn atom
representations for the prediction of molecular properties. The
basic chemical information encoded by molecular graphs is
used as the input for GNN, and then the specific molecular
feature of each atom toward different prediction tasks is learned
by aggregating the information from its neighboring atoms
and the connected bonds through message passing across
the molecular graph recursively. That means that the GNN-
based representation of a molecule is task-dependent and can
avoid artificial intervention in model building. A number of
GNN-based variants have been proposed for different tasks.
For example, Kearnes et al. developed a graph convolutional
network (GCN) called Weave [20], and Google proposed a GNN
framework named Message Passing Neural Network (MPNN) [21].
Both approaches were used to predict molecular properties and
offered remarkable improvements compared with traditional
methods. Recently, Zhao et al. proposed an attention-based GCN
to generate molecular representations for drug discovery [22], in
which they took atoms and chemical bonds as nodes and edges,
respectively, to encode each molecule into an undirected graph.
On this basis, they predicted some pharmacological properties
of small molecules, such as molecular toxicity, solubility, etc.,
and the method gained a general improvement compared with
traditional molecular descriptor-based approaches. However,
most of the existing models work only at the molecular level,
such as predicting various global properties of molecules. Thus,
whether the GCN-based approaches can work well at the atomic
level is of great interest. Here, we extended the use of GCN to
predict atomic charges of molecules and proposed a new GCN
architecture, DeepAtomicCharge, which exhibits better prediction
accuracy and higher computational efficiency compared with
traditional ML-based methods. More importantly, the generated
DDEC charges can be efficiently used in large-scale virtual
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screening, thus providing an alternative way for structure-based
drug discovery.

Materials and methods
Data collection

In this study, we used the benchmark datasets reported by
Bleiziffer to train and validate the models [11]. A total of 130 267
molecules (90 248 from the ZINC [16] lead-like database and
40 019 from the ChEMBL [23] database) with two sets of the
DDEC charges based on different dielectric constants (¢=4 for
modeling partial charges in protein and ¢=78 for modeling
partial charges in solvent) were incorporated in the dataset, in
which the DDEC charges computed at high-level QM calculations
were set as the target values for the model training. Each dataset
was divided into two parts: the test set contains 3000 molecules
randomly selected from the dataset (2000 from the ZINC dataset
and 1000 from the ChEMBL dataset), and the remaining 127 267
molecules were used as the training set. The distributions of
the numbers of all atoms (C, H, N, O, S, P, F, Cl, Br and I) and
the numbers of the heavy atoms (C, N, O, S, P, F, Cl, Br and I)
in the dataset are shown in Figure S1. The numbers of different
elements in the dataset are shown in Figure S2.

Graph neural network

GNN was first proposed by Scarselli et al. [24] in 2009 for pro-
cessing the non-European-structured data and graph-structured
data. Since many graph-based data, such as social relationships,
recommendation system, etc., needs for understanding in the
real life, GNN has achieved rapid development in recent years.
For instance, Kipf et al. proposed a convolution method named
GCN to solve the semi-supervised classification problem based
on graph-structured data [25]. Later, other new GCNs have been
developed, such as Graph Sample and Aggregate (GraphSAGE)
[26], which was developed to reduce the computational cost for
traversing subgraphs for model training. Although numerous
new types of network models have been developed, many of
them follow a same propagation mechanism, namely, the MPNN
architecture developed by Google [21]. Generally, an MPNN con-
sists of a message function M; and a vertex update function U,
as shown below:
The message function:

mt*t = Z M; (hi, h,, eww) (1)

weN(v)
The vertex update function:
™ = Ut (h, my™) @

where v is the target node and N, is the neighborhood set
connecting to v. hi, and hi, are the t layers of the hidden state
of v and its neighbor w, respectively. e,, represents the edge
information between node v and its neighbor w. In the message
passing phase, through message function M;, the information
of the neighbors of the target node is aggregated to obtain the
neighbor message vector m'+1. After that, in the status update
phase, the neighbor message vector m*™*! and the state vector
ht of the target node v are combined through the vertex update
function and update to get the hidden state vector hi? for the
next stage of node v.

Table 1. Features and descriptions of atoms and bonds

Atom feature Description Size

Atom type H,C N,O,S,FCl,Br,1,Pand 11
‘others’ (one-hot)

Degree Number of covalent bonds 6
(one-hot)

Hydrogen Number of connected hydrogens 5
(one-hot)

Hybridization sp, sp2, sp3, sp3d and sp3d2 5
(one-hot)

Valence Implicit valence (one-hot) 6

Aromaticity Whether the atom is in an 2
aromatic system (one-hot)

Formal charge Atomic formal charge 1

Radical electrons Number of radical electrons 1

Bond feature Description Size

Bond type Single, double, triple and 4
aromatic (one-hot)

Conjugation Whether the bond is conjugated 1
(one-hot)

Ring Whether the bond is ring 1
(one-hot)

Inspired by the MPNN architecture, here, we proposed a new
propagation framework for GCN. The encoding of the molecules
is represented in the following part.

Atomic featurization

Before putting the graph-structured data into the network, we
need to characterize the features of nodes and edges (atoms
and bonds) to describe atoms. Based on the chemical nature
of the atoms in molecules, we defined eight features for an
atom (including atom type, degree, hydrogen, hybridization,
valence, aromaticity, formal charge and radical electrons) and
three chemical bond features (including bond type, conjugation
and ring). All the annotations of the atom and bond features can
be found in Table 1. All the features are converted into the one-
hot representation [27], where only one bit is set to 1 with all the
others in 0, except the formal charge and radical electron, which
use integer type. Afterward, all the atom and bond features are
merged together as the final features of atoms to input into the
network.

Since different molecules have different number of atoms
with different target values (a hard situation for operation), we
came up with a solution to make a fixed-length molecule for
the embedding process. That is, before putting the molecular
features into the network, we reshaped each molecule by adding
a certain number of fake atoms. By doing this, all the molecules
have the same number of atoms. To make the fake atoms unin-
formative, we set all the values of the feature vectors of the fake
atoms to zero and also disconnect them from any other atoms.
Of course, all the prediction results of the fake atoms will be
removed when the target value (i.e., RMSE) is calculated.

Atomic representation network architecture

In this part, we introduced a new GNN architecture, called Atom-
icRepresentation, to extract the structural features of the atoms
in the molecule for atom representation. Following the basic
propagation update rule of the MPNN architecture, we designed
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the network structure according to the characteristics of atoms.
With the principle of simplicity and efficiency, the architecture
of AtomicRepresentation is simply designed but very efficient in
the following tests. The handling processes are as follows:

(1) First, we calculated the atom features and bond features
for each atom by using RDKit [23]. Taking atoms as nodes, the
features of all atoms are input into AtomicRepresentation. Then
a number of fake atoms with the features of zeros are added
to each molecule to keep the molecules in the same length
(consisting of the same number of atoms). As can be seen in
Table 1, each atom (including the fake atoms) is represented by a
37 bit vector. Thus, each molecule can be finally represented by
a matrix of n x 37 (n is the number of atoms in a molecule). The
n depends on the maximum number of atoms in the molecules
in the dataset (here n is set to 65).

(2) With the proper representation of atom features, the
next step is to sample and transfer the information of neighbor
nodes of the central atoms. This step includes the sampling and
aggregation operations of the neighbor nodes. In most graph-
based data, the number of nodes in the subgraph increases
exponentially, which may lead to a very high computational
complexity. To solve this problem, numerous algorithms, such
as GraphSAGE [26], set a hyper-parameter to control the number
of samples. However, in this work, the connections of atoms in
each molecule are not too complicated. Thus, we can sample all
the neighbor nodes in the molecule. In the sampling process, we
first get h!, (the state vector of the neighbor node of the central
atom in this layer) and ey, (the edge or chemical bond feature
vector between this neighbor node and the central atom) and
then concatenate the node state h!, and ey, to get a new vector.
After obtaining the information of all the neighbor nodes, we
aggregate them by simply summing them up to keep all the
message vectors with the same length. The formula shows as
follows:

Agg(v) =0 Z w (hw

weN(v)

ew) +b (3)

where W and b are the learnable parameters for aggregation
operations, respectively, and ¢ is the nonlinear activation func-
tion. Therefore, the message function can be expressed by the
following formula:

mit = Agg"(v) (4)

(3) After obtaining the message information through step 2, the
last step is to iteratively update the message for each layer,
where we aggregate the state vector of the central atom and
its neighbor message information by using the concatenate
operation as the following formula:

B =o (W [ mi ) )

DeepAtomicCharge

The architecture of the DeepAtomicCharge model is shown in
Figure 1. Here, we use benzoic acid amide molecule as an exam-
ple to describe the calculation process. The molecule (with the
SMILES/sdf/mol2 format) is input into the model with all H
atoms added. The first step is to extract the features of the
molecule and add the fake atoms. In the second step, the ini-
tialization state vector h? of the target atom v and its neighbor
nodes are obtained and input into layer 0 of AtomicRepresentation.
The message vector of the neighbor nodes m? can be obtained

through the message function in the AtomicRepresentation layer
by aggregating all the state vectors of the neighbor nodes. After
concatenating the initial state vectors hY and mJ, the concate-
nated vector will be input into a fully connected layer to get the
state vector h!l. The state vector h! has two usages: one is to be
used as the input for the next AtomicRepresentation layer, where
all the subsequent AtomicRepresentation layers can be calculated
(the final one is h!); the other is to be used in the final aggregation
stage, where the state vectors of all intermediate layers and
the final state vector are input into a fully connected layer and
aggregate again. This aggregation function used here is the same
as that used in the AtomicRepresentation layer. The final step is to
put the obtained aggregated vector into a fully connected layer
and output the predicted atomic charges.

Model training and hyper-parameter optimization

The DeepAtomicCharge model was constructed with PyTorch [28]
and PyTorch Geometric [29] framework, and the gradient descent
optimization in the Adam [30] optimizer was employed. Here,
MSELoss (measure mean-squared error) was used as the loss
function for the charge prediction task. The early stop [31] strat-
egy was used in the training phase to prevent overfitting and
reduce the training time.

In addition to the hyper-parameter searching, random search
[32] was used to find the best combination since too many hyper-
parameters need to be determined. Here, 10-fold cross valida-
tion was used for the model construction. Finally, three main
model hyper-parameters were determined, in which the best
AtomicRepresentation layers is 6, the best output atom embedding
number is 128 and the best learning rate is 0.005.

Atomic charge correction

Since the model predicts the atomic charges for individual
atoms, there is no rule to ensure that the sum of the predicted
atomic charges in the same molecule is strictly equal to
the formal charge of the molecule. However, in practical
applications, such as molecular docking, it requires that the
sum of the atomic charges in the entire molecule is an integral
number, namely, the formal charge of the molecule. Thus, here
we proposed a simple correction strategy to correct the predicted
atomic charges. First, we summed the absolute value of the

predicted atomic charges in the molecule Q¥.

Natoms

e = > lail )

i=1

Then, we calculated the charge difference between the sum
of the predicted values and the formal chargeAQ.

Natoms

AQ — z qi — Qformal (7)

i=1

Finally, we calculated the corrected charge q®" with the
following:

corr

i| (AQ)
q; —}ql a

=qi pre (8)
bs

As discussed below, the correlation/deviation between the

DDEC charges and the corrected atomic charges will not change

a lot since the total correction AQ for each molecule is very tiny.
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Figure 1. Architecture of the DeepAtomicCharge model. The F module is the feature extraction process, and the A module is the process of filling up the fake atoms. ||
and + are the concatenate operator and the bitwise addition operator, respectively. Layer 0 to layer t-1 are AtomicRepresentation layers. FC is the fully connected layer.

C is the atomic charge predicted by the model.

Evaluation metrics

In order to quantitatively evaluate the accuracy between Deep-
AtomicCharge and the benchmark model reported by Bleizif-
fer et al., mean-absolute-error (MAE), root-mean-square error
(RMSE), coefficient of determination (R?) and cumulative distri-
bution curve were used as the evaluation metrics.

Application in structure-based virtual screening

Since DeepAtomicCharge is quite computationally efficient, it can
be used to calculate the partial charges of a large number of
molecules in chemical libraries for virtual screening. Here, the
performance of the DDEC charges predicted by DeepAtomicCharge
on docking-based virtual screening was assessed, and androgen
receptor (AR), a target that has been extensively investigated by
our group [33, 34|, was employed as an example system.

A total of 311 actives (agonists/antagonists) targeting AR with
Ki <10 pM were collected from BindingDB [35]. To mimic the
unbalanced nature of inactives versus actives toward a specific
target, we chose to set the ratio of actives-inactives to 1:100.
Then, a total of 31 100 decoy molecules with similar distribution
of molecular weight (MW) to the actives (Figure S3) were ran-
domly selected from the ChembDiv library. All the ligands were
prepared with the LigPrep module in Schrédinger using pH=7.0
and saved as mol2 format for further molecular docking.

The crystal structure of AR (PDB code: 1Z95 [36]) was used as
the initial structure for molecular docking, where the docking
position was set at the ligand binding pocket (LBP) with the box
size of 20 x 20 x 20 A centered on the centroid of the ligand. The
protein was prepared with the standard procedure of the Protein
Preparation Wizard in Schrédinger, which includes adding the
missing hydrogen atoms and repairing the imperfect crystallized
side chains of the protein residues. The protonation states of
the protein were determined by PROPKA (version 3.1) [37]. The
Glide [38] module with the standard precision (SP) scoring mode
in Schrédinger was employed as the docking engine since it is
the most widely used docking approach in drug design campaign
[39-42]. To give a comparison, all the compounds were docked
with two types of partial charges, namely, the default OPLS3e
charge and the DDEC charge.

The screening power proposed by Wang [43], enrichment
factor and the area under curve (AUC) value of receiver operat-
ing characteristic (ROC) curve were employed as the evaluation
metrics for docking-based virtual screening.

Results and discussion

It is well known that different molecular descriptors are suitable
for different tasks. However, how to select the optimal descrip-
tors for a specific task is quite challenging, and in a large extent,
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Figure 2. Performance of the DeepAtomicCharge and Bleiziffer's models with the 10-fold cross validation on the two training sets. (A) Distribution of the predicted atomic
charges versus the DDEC atomic charges on the training dataset with ¢ =4. (B) Distribution of the predicted atomic charges versus the DDEC atomic charges on the
training dataset with & =78. (C) Cumulative distribution curve of the predicted atomic charges of the two training sets.

the selection of molecular descriptors is knowledge-dependent.
The emergence of GCN helps to solve this problem by automat-
ically learning the appropriate features for each specific task.
DeepAtomicCharge is a GCN-based model that can automatically
extract features from molecular structures to describe atomic
charges according to the chemical environments of atoms. In
order to verify the effectiveness of DeepAtomicCharge, we used the
two datasets derived from Bleiziffer’s study for the model build-
ing and testing, respectively, which contain the same molecules
with different atomic charges calculated in different solute envi-
ronments (¢ = 4 and 78).

In order to give a fair comparison between the DeepAtomic-
Charge model and Bleiziffer’s model, we used the scripts provided
by Bleiziffer et al. to construct the RF-based model with their best
parameters on the same dataset. It should be noted that, unlike
Bleiziffer’s work, where they trained 10 models for different
types of atoms, in the framework of DeepAtomicCharge, all types
of atoms were trained together to build a single model that is
applicable to all types of atoms. Therefore, to make the results
comparable, we integrated all the 10 models in Bleiziffer's work
into a single model as well (hereinafter referred to as Bleiziffer’s
model), where a classifier was added to classify different atom

types to input into their respective models. Then, in this way, the
model reported by this study and that reported by Bleiziffer et al.
can be compared directly.

Performance of 10-fold cross validation
on training datasets

In this part, we performed the 10-fold cross validation on the
two datasets (¢ = 4 and 78). Figure 2A shows the distribution of
the predicted atomic changes versus the DDEC charges on the
training set based on ¢ = 4. As shown in Figure 2A, the MAE
and RMSE of the DeepAtomicCharge model are approximately
23.71 and 36.90% lower than those of Bleiziffer’s model (0.0074
e versus 0.0097 e and 0.0106 e versus 0.0168 e for MAE and RMSE,
respectively). Similar case can be observed for the training set
with ¢ = 78 (Figure 2B), where the results of DeepAtomicCharge are
more convergent than Bleiziffer's model with the MAE and RMSE
approximately 20.39 and 32.64% lower than the corresponding
results of Bleiziffer’s model (0.0082 e versus 0.0103 e and 0.0130
e versus 0.0193 e for MAE and RMSE, respectively).

In order to quantify the results better, Figure 2C and
Table 2 illustrate the cumulative distribution curves and the
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Table 2. Ratio of the samples with the absolute error within 0.01, 0.02, 0.03, 0.05 and 0.1 e in the 10-fold cross validation of the two training sets
(¢ =4 and 78) between the DeepAtomicCharge model and Bleiziffer's model

e=4 0.0le 0.02e 0.03 e 0.05e 0.10e
Bleiziffer's model 69.71% 88.24% 94.25% 98.12% 99.71%
DeepAtomicCharge 72.46% 93.21% 98.05% 99.72% 99.98%
e=78 0.0le 0.02e 0.03 e 0.05e 0.10 e
Bleiziffer's model 69.87% 86.58% 92.81% 97.36% 99.55%
DeepAtomicCharge 72.78% 91.50% 96.80% 99.29% 99.93%
a Predicted Atomic Charges Distribution (£=4) [ Cumulative Distribution (e=4)
6
s i 10 =
2 2 = N |
154 R'=0.9956 R"=0.9983 y
MAE=0.0097 G MAE=0.0074 pes 10°
RMSE=0.0168 g RMSE=0.0106 "
1.0
= g g 10°
2
E 0.54 s
%: 10
[
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Figure 3. Distribution of the predicted atomic charges versus the DDEC atomic charges of DeepAtomicCharge and Bleiziffer’s model on the test datasets with ¢ = 4 (top)

and 78 (bottom) before (left) and after (right) correction.

corresponding values of the predicted results for the two
training sets. As shown in Figure 2C, the green solid lines are
both above the corresponding purple dotted lines at any time,
suggesting that the graph-based DeepAtomicCharge model always
outperforms the traditional descriptor-based ML model. Table 2
shows more detailed difference in each fraction of the data
for the two methods, where no matter in which dataset, the
absolute error of the DeepAtomicCharge model is within 0.03 e for
>95% data. This is a very low prediction error for atomic charge
prediction.

Performance on test datasets

The left column of Figure 3 shows the distribution of the pre-
dicted atomic charges versus the DDEC atomic charges before
correction on the two test datasets. The orange and blue dotted
lines represent the prediction results of the DeepAtomicCharge
model and Bleiziffer's model, respectively. For ¢ = 4 (the top
panel in first column of Figure 3), the MAE and RMSE of the
DeepAtomicCharge model are 0.0077 e and 0.0109 e, respectively,

which are 20.62 and 33.54% lower than those of Bleiziffer’s model
(0.0097 e and 0.0164 e for MAE and RMSE, respectively). Similar
results are shown in the bottom panel (s = 78) of the left column
in Figure 3, in which the performance of the DeepAtomicCharge
model is also much better than that of Bleiziffer’s model with
the MAE and RMSE decreased by 22.30 and 32.31%, respectively,
compared with those of Bleiziffer’s work (0.0079 e versus 0.0103
e for MAE and 0.0132 e versus 0.0195 e for RMSE). Since the
two test sets (¢ = 4 and 78) were randomly selected from the
original datasets, the predicted results for the two test sets are a
bit different. Nevertheless, it will not affect the conclusion that
the graph-based GCN model (DeepAtomicCharge) substantially
outperforms the descriptor-based ML model (Bleiziffer’s model).

Correction of the predicted charges on the test datasets

Since the sum of the predicted atomic charges of a molecule
may not be an integer (formal charge), to make the predicted
atomic charges applicable for practical applications (such as MD
simulation and docking-based virtual screening), we corrected

2202 1890100 G| U Jasn AysieAlun Buoy oelr leybueys A L 8G968G/£81ERAG/E/ZZ/2101ME/qIG/W00"dNO"OIWSPEsE//:SRY WO} POPEojUMOd



8 | Wangetal

Jd AL LA s e

L LD

| |

o H e H
H

H H

0.05

0.00

G Orve

Figure 4. Example of heat maps of absolute error between the atomic charges predicted by DeepAtomicCharge and the DDEC calculations before and after correction. (a)
Molecules showing without H element on training dataset with ¢ = 4. (b) Molecule showing includes H element on training dataset with ¢ = 4.

the predicted data according to Equation (8) for DeepAtomicCharge
and also corrected Bleiziffer’s results with their strategy. Figure 3
shows the distribution of the atomic charges predicted by the
DeepAtomicCharge or Bleiziffer’s model versus the DDEC atomic
charges on the two test sets (¢ = 4 and 78) before and after
correction. It can be observed that the prediction accuracies
become even slightly higher after correction for both test sets,
while the gap between them remains the same, in which the
MAEs of DeepAtomicCharge increase 23.71 and 26.21% and the
RMSEs increase 33.95 and 32.81% for the two datasets (¢ = 4 and
78), respectively, compared with those of Bleiziffer's model.

To show the effect of correction on the atomic charges pre-
dicted by DeepAtomicCharge clearly, the molecules containing
iodine atoms in the test set (¢ = 4) were employed as an example
for analyzing. There are three reasons for this: (1) the number of
I-containing molecules in the dataset is the lowest (43 in the test
set), which is more convenient for analyzing; (2) these molecules
usually contain <30 atoms and are more clear for visualization;
and (3) besides containing large numbers of C and H atoms, these
molecules also contain several heteroatoms (such as I and F).
Thus we can try to understand how these heteroatoms affect
the prediction results.

To make the result more clear, the 43 I-containing molecules
were clustered into three categories using AgglomerativeCluster-
ing() in scikit-learn [44] library (version 0.21.2), and five molecules
close to the cluster center were used for display. Figure 4 shows

the absolute error between the predicted atomic charges and the
DDEC atomic charges before and after correction for the five I-
containing molecules, in which Figure 4A illustrates the heavy
atoms only, while Figure 4B shows all atoms for an example
molecule. It can be seen from the figure that the absolute errors
of the predicted charges of all atoms only change slightly after
correction, implying that the correction operation has tiny effect
on the predicted atomic charges of DeepAtomicCharge and thus
the predicted results are suitable for various molecular modeling
applications.

Application of DeepAtomicCharge in structure-based
virtual screening

Because the calculation of DDEC charges is too time-consuming,
there is no any practical application of this type of charge in
large-scale structure-based drug discovery. To assess the appli-
cability of DDEC charges in virtual screening, here we assessed
the screening power of molecular docking based on the DDEC
charges generated by DeepAtomicCharge and the default OPLS3e
charges assigned by Schrodinger for the system of AR. As shown
in Figure 5, the DDEC charge (panel b) exhibits stronger screening
power in discriminating actives from inactives for AR compared
with the widely used OPLS3e charge (panel a) based on the
Glide SP docking mode, where the active/inactive peaks were
separated more obviously of the DDEC charge (with the P-value
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Figure 5. Performance of DDEC and OPLS3e charges on virtual screening. The screening power (A and B), AUC value under ROC curve (C) and the enrichment factor (D)
are used as the metrics for comparison. The known actives and decoys are colored with red and green, respectively, for OPLS3e charge (A) and DDEC charge (B). The
ROC curves and enrichment factor curves are colored blue and orange for the DDEC and OPLS3e charges, respectively. The correlation between the DDEC and OPLS3e

charges for each atom of the actives is plotted in E.

given by Student’s t-test of 1.18 x 1078 versus 1.18 x 101 for
the DDEC charges and OPLS3e charges, respectively). Moreover,
both the AUC value under ROC curve and the enrichment factor
for the DDEC charges are significantly higher (blue lines in
panel c and d) than those for the OPLS3e charges (orange lines
in panel c and d), indicating that the DDEC charge is a good
choice for structure-based drug design. A comparison between
the DDEC charges and the OPLS3e charges for the actives of AR
illustrates that, although high correlation is shown of the two
types of charges (R?=0.82), large difference may exist between
each atom pair (MAE > 0.07e, Figure SE), implying that the two
types of charges are different in nature and may be suitable for
different types of systems which need further investigation. Fur-
thermore, it should be noted that the DeepAtomicCharge method
is very computationally efficient. The calculation of the DDEC
charges for the 311 actives and 31 100 inactives only needs
around 32 minutes on a laptop (CPU, Intel Core i7-8750H and GPU,
NVIDIA GeForce GTX 1060). That is to say, the DeepAtomicCharge
method can be used to process very large chemical libraries in a
very short time.

Conclusion

In this work, we proposed an atomic representation layer
based on GCN and an atomic charge prediction model called
DeepAtomicCharge. Compared with existing GCN frameworks
and charge prediction models, DeepAtomicCharge exhibits the
following advantages:

(1) Compared with existing GCNs, the AtomicRepresentation
layer and DeepAtomicCharge model are designed for atomic level
tasks rather than molecular level ones, which guarantee the
better capability of the model to reveal the relationships between
atoms.

(2) Compared with the reported charge prediction models,
DeepAtomicCharge, as an end-to-end model, can dynamically
learn the topology features between atoms without the need to

predefine any atom descriptors. This makes the algorithm more
flexible and avoids introducing artificial influence compared
with traditional descriptor-based approaches.

(3) The MAE and RMSE of the predicted atomic charges given
by DeepAtomicCharge decrease more than 20% and 30%, respec-
tively, compared with those reported by Bleiziffer’s benchmark
study. Moreover, the average storage size of the trained model of
DeepAtomicCharge (2.62 MB) is approximately 300 times smaller
than that of Bleiziffer’s method (771.79 MB) (Table S1). The three
advantages make the algorithm more useful and easier to be
embedded into websites or python packages.

Furthermore, the DDEC charges generated by DeepAtomicCha-
rge also exhibit high accuracy in structure-based virtual screen-
ing, giving an alternative way for large-scale structure-based
drug design.

In conclusion, all the experimental results support that Deep-
AtomicCharge is a more flexible, convenient and accurate atomic
charge prediction model and can be applied in actual structure-
based drug discovery.

Key Points

® A new GCN-based architecture was developed and
applied for large-scale atomic charge prediction.

® The new algorithm exhibits significant improvement
for atomic charge prediction (with higher accuracy,
higher computational efficiency and less storage
space) compared with traditional methods.

® The high-level DDEC atomic charges predicted by
DeepAtomicCharge were applied to the large-scale
structure-based virtual screening and achieved better
performance than the OPLS3e charges.
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